An Elementary Chromatic Reduction for Gain Graphs and Special Hyperplane Arrangements
نویسندگان
چکیده
A gain graph is a graph whose edges are labelled invertibly by gains from a group. Switching is a transformation of gain graphs that generalizes conjugation in a group. A weak chromatic function of gain graphs with gains in a fixed group satisfies three laws: deletion-contraction for links with neutral gain, invariance under switching, and nullity on graphs with a neutral loop. The laws are analogous to those of the chromatic polynomial of an ordinary graph, though they are different from those usually assumed of gain graphs or matroids. The three laws lead to the weak chromatic group of gain graphs, which is the universal domain for weak chromatic functions. We find expressions, valid in that group, for a gain graph in terms of minors without neutral-gain edges, or with added complete neutral-gain subgraphs, that generalize the expression of an ordinary chromatic polynomial in terms of monomials or falling factorials. These expressions imply relations for all switching-invariant functions of gain graphs, such as chromatic polynomials, that satisfy the deletion-contraction identity for neutral links and are zero on graphs with neutral loops. Examples are the total chromatic polynomial of any gain graph, including its specialization the zero-free chromatic polynomial, and the integral and modular chromatic functions of an integral gain graph. We apply our relations to some special integral gain graphs including those that correspond to the Shi, Linial, and Catalan arrangements, thereby obtaining new evaluations of and new ways to calculate the zero-free chromatic polynomial and the integral and modular chromatic functions of these gain graphs, hence the characteristic polynomials and hypercubical lattice-point counting functions of the arrangements. The proof involves gain graphs between the Catalan and Shi graphs whose polynomials are expressed in terms of descending-path vertex partitions of the graph of (−1)-gain edges. We also calculate the total chromatic polynomial of any gain graph and especially of the Catalan, Shi, and Linial gain graphs.
منابع مشابه
An Elementary Chromatic Reduction for Gain Graphs and Special Hyperplane Arrangements1
A gain graph is a graph whose edges are labelled invertibly by gains from a group. Switching is a transformation of gain graphs that generalizes conjugation in a group. A weak chromatic function of gain graphs with gains in a fixed group satisfies three laws: deletion-contraction for links with neutral gain, invariance under switching, and nullity on graphs with a neutral loop. The laws are ana...
متن کاملColoring Complexes and Arrangements
Steingrimsson’s coloring complex and Jonsson’s unipolar complex are interpreted in terms of hyperplane arrangements. This viewpoint leads to short proofs that all coloring complexes and a large class of unipolar complexes have convex ear decompositions. These convex ear decompositions impose strong new restrictions on the chromatic polynomials of all finite graphs.
متن کاملInvariant factors of graphs associated with hyperplane arrangements
A matrix called Varchenko matrix associated with a hyperplane arrangement was defined by Varchenko in 1991. Matrices that we shall call q-matrices are induced from Varchenko matrices. Many researchers are interested in the invariant factors of these q-matrices. In this paper, we associate this problem with a graph theoretic model. We will discuss some general properties and give some methods fo...
متن کاملBiased Expansions of Biased Graphs and their Chromatic Polynomials
Label each edge of a graph with a group element. Call the labels gains, and call the graph with this labeling a gain graph. A group expansion of an ordinary graph is an example of a gain graph. To construct one, replace each edge of a graph by several edges, one bearing as gain each possible value in a group. We introduce the concept of a group expansion of a gain graph. Then we find a formula ...
متن کاملChromatic Harmonic Indices and Chromatic Harmonic Polynomials of Certain Graphs
In the main this paper introduces the concept of chromatic harmonic polynomials denoted, $H^chi(G,x)$ and chromatic harmonic indices denoted, $H^chi(G)$ of a graph $G$. The new concept is then applied to finding explicit formula for the minimum (maximum) chromatic harmonic polynomials and the minimum (maximum) chromatic harmonic index of certain graphs. It is also applied to split graphs and ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 16 شماره
صفحات -
تاریخ انتشار 2009